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In this paper the three-dimensionsl (axisymmetric) problem of nonsteady pro-
pagation of a crack in an elastic medium under the influence of a homogeneous
tensile stress is solved. The analogous plane problem was considered in[1].
An analysis of the formulation of the problem of [1l] and the results is given
in (2] based on consideration of the cohesive forces acting near the edge of
the crack., In this work an equatlion was obtained for the speed of propaga-
tion of the crack. A comparison with the experimental results of Wells and
Post [3] may be found in the same reference. The plane problem of propaga-
tion of a crack after a semi-infinite cut is instantaneously made in a stres-
sed medium is solved in [4].

The solution of the axisymmetric problem is carried out below. Formulas
are obtained for the displacement at the surface of the crack and for stres-
ses near the edge., It 1s shown that, jJust as in the plane problem, the speed
of propagation of a crack cannot exceed the Raylelgh surface wave velocity.
An equation which determines the spead of propagation of a crack is obtained.

1. Pormulation of the problem. Let an unbounded elastic medium having
shear modulus pu and longitudinal and transverse wave veloclties ¢ and b,
respectively, be in a state of homogeneous tension for ¢ < 0 , so that only
a single component, o,° , of the stress

;%//MV % o T A Srack 1e forned at
O, oo, ™ e then promsgaien.

ol —= city a . For ¢ > O, the surface of
z the crack in & cylindrical system of
Fig. 1 coordinates r, ¢, 2 13 defined by the

relations (Fig.1l)
z =0, rat (1.1)

The surface of the crack is to be free from stresses (we shall neglect
the forces of molecular conesion acting near the edge of the crack, consicer-
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ing this region as infinitesimally narrow). Therefore, the elastic disturb-
ances caused by the propagation of the crack must satisfy the conditions

— o
6= —0;, T =0, Toz =0 for 2=0, 0r<at (1.2)
on the surface of the crack.

These disturbances are absent at the initial instant of time, which is
expressed by the homogenelty of the initial conditions

u=u=0 for t=0 1.3)

where u 1s the displacement vector with components wu,, u_ and y, . It

is obvious here that Uy, = O, and that all the remalning quantities are inde-
pendent of g {axisymmetric problem). The dot denotes differentiation with
resect to time.

In addition to the boundary and initial conditions, it is necessary to
impose a further condition on the behavior of the solution in the neighbor-
hood of the edge of the crack. This additional condltion which restricts
the order of growth of stresses near the edge of the crack can be obtained
by conslderling the additional stresses generated by the forces of cohesion
[2]. A somewhat different method is proposed below. It is clear physically
that a certain amount of energy is dissipated upon formation of the crack.
Using the enegy integral of the equations of motion applicable to the total
field, it can be established that the rate of energy dissipation {the.power
expended in formation of the crack) is equal to

W= %1_51’ §§ {tnv ——;-' [e (v)* 4 v&] a cos (n, r)} das (1.4)

where ¢ and + are the strain and stress tensors, v=1u is the velocity
vector of the particles of the medlum, the surface Sy surrounds the edge
of the c¢rack and is at a distance § from i1t, and n 1s the outer normsl
to Sy Thus, we require that the integral in (1.4) approach a finite
positive (nonzero) 1imit independently of the way s shrinks down to the
edge of the crack. The second term in the braces, which 1s related to the
motion of the surface of integration, gives zero in the limit. This may be
shown by choosing a surface , whose intersection with the rz plane
has the form of a rectangle with sides 28, and 28, in the r and s direc-
tiors, respectively, and by letting §, approach zero for fixed &;. Thus,
the required condition has the form

0.< 2nat Jim S t,vdl < oo (1.5)
iy

where ‘ly 1s the section of Sy by the rz plane. Here the symmetry of
the problem with respect toc the z-axis has been used. It will be shown in
Section 3 that the stress and velocity components have singularities of the
same order for r - at and 2z - O , In order that the integral (1.5)
approach a finite limit it is, therefore, necessary that the stress and velo-
¢city components (or at least some of them) increase as §" near the edge
of the crack.

It is easy to see that the stress and velocity components must be homo-
geneous functions of the coordinates and time of order zero. Prom this and
the requirement on the rates of increase which has been shown, 1t follows
that the asymptotic expressions for the components of veloelty and stress
must be proportional to /t/& as & - O . The integral in {1.5) then turns
out to be proportional to ¢t , i.e. # ~ t®. This conclusion seems strange
since the surface of the crack increases at the rate U4na®¢ so that the
energy 1s not dissipated proportionally to the area. This may be explained
in the following way (see also [2]). It can be assumed that the edge of the
crack is surrounded by a region in which plastic deformation of the material
takes place. In the present problem this reglon is considered to be infini-
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tesimally small; however, it actually has small but finite dimensions, Since
the plastic region is absent at the initial instant, 1ts dimensions must
increase at the same time as the crack grows, until they attain some station-
ary magnitude, It may be considered that for small values of ¢ the dimen-
sions of the plastic region increase at a constant rate (proportional to the
rate of propagation of the crack, g ) and that the energy expended in forming
the plastic region increases proportionally to its volume. We may then set

W = 2n a¥*C (C = const)
We obtain the additional condition in the form

lim Stnv dal = a®tC (1.6)
30 0
instead of (1.5).

We note that the variation of stresses in the neighborhood of the edge of
the crack proportional to /¢t/§ was also obtailned in [1 and 4], and has
been confirmed experimentally as well [2 and 3]. It 1s clear from the above
explanatlon that the assumption of a constant velocity of propagation of the
crack is valid only for the initial stage of crack growth. This conclusion
was arrived at [2] from somewhat different considerations.

It is convenient to reduce the problem to a boundary value problem for
the half-space z > 0 , To do thls we note that on pasaing through the plane
z = 0 the stresses must be continuous everywhere and the displacements con-
tlnuous outside the crack., We split the displacement vector into symmetric
and antlsymmetric parts relative to the plane 2z = O . In the antisymmetric
part, u, and r7,, are even and y, and ¢, are odd functions of z . Using
the indicated requirement of continuity and conditions (1.2) we see that u,
and o0, in the antisymmetric part should vanish in the entire plane gz = O.
This, together with the initial conditions, shows that the antisymmetric part
1s identically equal to zero, 1.e. that the solution of the problem is sym-
metric with respect to the plane g = 0 . Then y, and 1., are odd and u,
and ¢, are even with respect to z . This gives the boundary conditions
for 2 =0

T = for z=0, O0<K<r<o
0,=—0;" for z=0, orgat (1.7)
u, =0 for 2=0, atlr<oo

2. 8olution of the problem, The solution of a selfsimilar axisymmetric
problem, when the components of veloclity and stress are homogeneous functions
of the coordinates and time of order zero, under the condition

=0 for 2=0 0<r< o (2.1)
can be written in the form [5]

Uy = vy = 0,0 4 2,0, 0,13 = ReS Ve (8%9) cos Q dQ

u =0, =50+ 0,®, 09 =Re| V091940
% 2.2)

T
1, =1, 4+ 1,9, & = Re S T (O cos Qd Q
-7
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ki1
2.2
0, = 0, + g, 0,09 = Re S 2,5 (902) 4Q gont%

~%

where 1 and §® are determined from Equations
MW =t—9Vrcos Q—zVa2_9P2=
8V =t—0¥rcos Q— zVB? — 9@ = 2.3)

and the functions under the integral signs are expressed in terms of a single
unknown function F (0?) by the relations

. 52 (1 — 2639 , .
Ve (9) = ——;,‘——,———J F' (9%, v @)= — 40202 V5 E — 92 F (0?)
V.V (8) = 20 (4 — 20%0%) F’ (8%), V. (9) = 4b20°F’ (92) (2.4)
ay . 468-@. (62 1/ bﬂ)z ’
5;;2‘1 ) =—— = F(®)
gﬁ-z,"" ) = — 4bmsv 5T 0 B (9Y)
T @)= — Tl (9) = — 200 (1 — 26%0%) F' (9)

Primes denote differentiation of the functions with respect to their argu-
ments (i.e., for instance, V¥ (8) = dVi™/d®, vut F’ (8%) = dF/d (6?)).
This solution 1s obtained by the method of V.I. Smirnov and S.L. Sobolev (*).

For z == ( the functions ﬁm and ﬁm assume the same values,

Y =99 = ¢/rcos @ =9.
Differentlating the second and fourth expressions of {2.3) with respect to
time, setting 2z = 0, using (2.4), and transforming to the new variable
== 02, we obtain

7% =Re| F'(_=
L
Lo, = —4ub? R(V) F
5 Oz 4pb RelS Vi F' (v)

vo=£2/72, RW=Cw="Yp)+vVai—vVbi—v (2.6)

for z==0 (2.5)

Vv—m,

V'V—'Vo

with the path of integration shown in Fig.2. We deflne the principal values

my of the radicals occuring in (2.5) by making

‘ &y suitable cuts along the positive real axis and

i y‘\———-—— Rev by requiring that Vg ?—y and V¥ i-y are
positive, and Vv —v, equals /5, for v=0,

*) Chapt. XII of [6].
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In order to satisfy the initial conditions we require that (2.5) vanish
for r>at , 1.e, for vb<:l/b’ . Por this 1t is necessary that the inte-
grands decrease sufficiently rapldly at infinity and that it is possible to
deform the path of integratlon freely in the half plane Rewv< \, for
Vo < l/h’. It follows from this that F’(v) must be regular except at the
cut from 1/a° to = and must decrease faster than v'! as vy - =. Further,
it follows from the boundary conditions (1.7) that the first of the expres-
sions of (2.5) vanishes for r > at , 1.e. for v,< 1/a®. For this to
occur, the function #/(v) should be regular for Re vy < 1/a®. The second
expression of (2.5) must disappear for r < at , 1.e. for v,>1/a® for this
to occur the integrand must be regular and singlevalued for Rev> y,> 1/&3.
These considerations make 1t possible to find »’(v) . The final expression
for F’(v) depends on the magnitude of a . Let us first examine the case
O<a<g¢g , where o 1s the Rayleigh surface wave.velocity (R(1/0®) = 0) .
In this case the conditicns which have been enumerated are satisfied by
Expression ) A()

F'v)=——-~=

(@2—w)

where n 18 an integer and A4(v) 1is an integral function which does not
vanish for v = 1/q°. To determine n it is necessary to return to the
additional condition (1.6) which, in particular, requires that the function
o, increase like 8~% as &= |r—qat|- 0. Therefore o, must behave like 87,
and this will occur only for n = 2. Taking into account that F’{v)=o(v?)
for v-=, we conclude that 4(v) must be bounded and that 4(v)=4 =const .

Thus A
F' (’V) = -(G.T‘:_‘\_;)—’- (2.7)
The following expressions can be obtained analogously to (2.5):
— dv
= — 4ub? -
0, ms V«;‘,ReISG(v)”/v_VO
Y for z=0 (2.8)
=V v
v,=} voRelSvF(v)vVv_vo
where
= ¥ ! p— ( R(A') ’
FO=\F 0 60 §——w_2_ = ' (8) dh (2.9)

Here the lower limit of integration 1s chosen equal to zero so that the
point vy = O is not a pole of the integrand in (2.8), which 1s necessary in
order to satisfy the boundary conditions. The function F(v) may be com-
puted directly and is equal to

2vA
Fv)= Sy

(2.10)

However, ¢(v) 1s transformed in the following way
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_T_R™ o R

Gv) = \ ™) L L0

) § o (v)dv+3 e PN d =M+ 6, () @A)
It is now clear from (2.8) that v, 1s actually equal to zero for r= qt.

Considering ¢(v) in the form (2.11) we see that g, (v) changes sign upon

passing through the cut from 1/4° to = , and that the integral of this term
in (2.8) vanishes for v, > 1/a®. Therefore,

6, = — 4ub? S VVV_% MVvy=—8unb®M for =0, rat

This value should be equal to — g2, i.e.

1 -3y — T, -2 —2
F (@2 +v)? Va" +v
From this relation we obtain the value of 4 . Since 4 1s negative,
we set

A, = — 224 (2.13)
We now find the expreasion for v, at z = O

3 At

V= oA for z=0, r<at (2.14)

Vot —r?

Integrating this expression with respect to time, we obtain an expression
for the displacement of the surface of the crack

u, =ad, Vot —ri (2.15)

The condition (1.6) still remains to be satisfied. This will be done in
the followlng section,

Let us now turn to the case ¢ < a < » . The zero of the function R(v),
i,e, the point v = 1/e? now lies to the right of the point v = 1/g®. There-
fore F’(v) can be taken in the form

Fr ) = 4) (2.16)

2—v)(@a?—v)"

As in the preceding case we conclude that » =2 , but now A(v) turns
‘out to be a linear function, which we write in the form

AE) =A4(@*—v)+ B@?—"v)

so that

A B
’ —
F ('V) - (a—ﬁ___ v)2 + (c-l__v) (a-I_ ‘V) (2‘17)
The first term coincides with the solution for the case O<g<g , but the
presence of the second term shows that the problem is now indeterminate.
Por we obtailn, instead of (2.12), Equation
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_ T b —y VS VTS
= Subin [AS L e dv +

W+ —v Ve F VY it v
+ BS (c?+ v) (22 4-v) Va—l Fv dv ] (2.18)

which is insufficient to determine the two constants 4 and p .

In the case » < q < g , the function p’(y) is constructed in a more
complicated way, but it can be shown in this case that the stresses cannot
have a singularity of order § at the edge of the crack. For this reason
we shall not dwell further nn this case,

The solution obtalned for the case O < a < ¢ 18 single valued so that
the velocity of propagation of the crack, a , is determined as a function of
the initial stress ¢,° from the condition (1.6)., In the following section
we shall see that for ¢ < a < » the condition (1.6) cannot be satisfied
since the integral on the right~hand side of (1.6) proves to be negative.

3. Behavior of the solution near the edge of the orack, The asymptotic
behavior of the solution near the edge of tne crack (r = at, ¢ = 0) 1s deter-
mined by the singularity of pF’(v) at the point v = 1/a®. Since in (2.17)
the second term has & weaker singularity at thls point than the first term,
the former makes no contribution to the leading term of the asymptotic expan-
sion of the solution near the edge. Therefore, the asymptotic behavior of
the solution must be studied with #’{v) in the form (2.7) for O< a < b .

First of all we calculate the original functions (2.4). However, since
only the behavior of the solution near the point r=q¢, 7 = O 1s lmportant,
it suffices to calculate the first terms of the asymptotic expansions of
these functions near the polnts ﬂ(1'2) =41 /o. To do this we proceed as
follows:

(1) o)
W a0y _ 292 (1 — 2b%9%) dP 24902 (4 — 2b2p0 2 a6
Ve’ (@) =4 S Var— 0@ — 0 Vai_gme S ey o i
. 81} 92 (1 — 2b%99) glne - 252912)) a0
424 S Vo~ Ve_ov: @iy
0

The second term has a singularity no greater than a logarithmlc one at
the points ‘f}(l) = 4 1/a whila the flrst term has a pole of order one.
Thus

@) g at 491 8 (1 — 2b29(1) ) .
Ve () = - — 0‘1’3)1/::-* FEE 3.1)
Analogously,
2 20334003 Y ;5 _g@) 3.9
VE(z) (0(-)) = — Vb 1__gl2)2 +0(n(— a20® i)) (3.2)

a2 —pP2



800 B.V, Kostrov

Vz(l) (0(1)) — a’Aﬁ(l) 2 (1 — 2b3‘0(1) 2) + 0 (ln (1 _ az,&(l) 2)} (32)

ot — 92 (cont)
V.2 8% = % + O(In (1 — a28®)
D S —
2%21"’ @) = — ZazbzA“:f::V;’W + 0 (In (1 — a20® )
2':7 T (Gm) = — azAﬂuZ?:O?:ﬁm ) +0(n(1 — 29 2)
i TE (0) = PACU=B0BY L 0 (in gt — a2

We can now write
n
(1) 34 _ opapll) 2
v?’za”AS 6009 (1 — 20900 %)
S (@t— 902 e g2

It is convenlent here to transform to the variable integration v = 912,
We then obtain

cos QdQ (3.3)

2@ = A (1 — 2b%v)dv

i @ = Vet v Vv—ar(t—2m—2a ¥V a—v

~
~

(3.4)
correct up to terms of order 1nlgz| and 1lnlat - r| .

Here | = (r —qt) /at, { = z/at, and the path I 15 shown in Fig.3.

Imy Imy
Rey .__._\_.7_’“72
/ w
o?
Fig. 3 Fig. &4

The ends of the path are at the points

v =a?( —2n +2iL)/1 — a%a’?)

The principal value of the last radical in the numerator of the integrand
of (3.4) must be taken so that it has a positive imaginary value for vy = O,
The path l(l) may be deformed as shown in Pig.4. It is now clear that the
asymptotic behavior of the integral for =, £ - 0 1s determined by the
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behavior of the integrand on the straight-line portions of the contour near
the points vlu) and Vzm, and we easlly obtain

W~ — V 2nAd (03— 2b%) 1
or Vicaes Vimny s (3.5)
Analogously,
7® = — 2V b A YT —a?h? Re—rmm
Va—itVabs
1
2,0 ~ — ¥ 214 (a2 — 2b%) Im
’ Vand( ) Va—iiVi—aas
= 1
7,0 >~ — 2 2nb*4 Im
’ 4 Va—g Vi
1w 5oyl 2 2 1
% |4 ( ) iy s (3.6)
A 2@ >~ — VYV 2aa4 (o — 2b%) Im !
o 4 ,( ) Vo—iVi—eo?
1 V 2 nrA (a2 — 2b% 1
— 5,1 ~ —
2 o W2 ¥V 1— afa? Re V'q-—- LY 1—a%a?

1
N— i V1 —atb?

i‘.lr 0,9 ~ — 2V 3na 5?4 V1 — a2 Re

We now turn to condition (1.6). Let us take the contour 5 in the form
of a small rectangle with sides 28, and 28, in the r and z directions,
respectively, and let &, go to zero for fixed §, . Then the integrals on
the sides parallel to the zr-axis vanish and the left-hand side of (1.6) takes
the form al+8,

2limlim {  (v.0, + o,0) dr
5,0 80 5i5, -

It is easy to see that 11, has no singularity at r =gt , z = 0, so
that the integral of the first term may be dropped. With the aid of (3.6)
we obtain

893362442 1/’1  aZa? ]/‘1 — a?h~? — (1 — Lyu?h2)2 Iy
Y i—a%?
It is clear from this that o cannot be greater than or equal to ¢ ,
since the left-hand side changes sign at g = o . Substituting the value
of 4 from (2.12), we have

(3.7)

(5P [(VT—=02a2 V11— a®®— (1 —Ysatb 22

3.8
8ubt (7 (@) ¥ T— a®a? ¢ (3.8)
where
20
LY bPmy Va2 v Voe: v
J(a) - S (1'2 + ,v)g Vm dv (3.9)

0
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Equation (3.8) determines the velocity of propagation of the crack as a
function of the initial stress. For o - O , we have

% {q? —b
T () =280

and, therefore, for small o we can write

a*[s,’ (0)]*
e g C (3.10)
This gives the smallest value g (0) for which the development of a crack
can begin 0.° (0) = a 'V px (@®— %) C (3.11)

At this point the problem merges with the theory of equilibrium cracks.
Strictly speaking, the problem assumes the presence of a small crack at the
initlal time, but the dimensions of the crack are not taken into account in
the mathematical formulation. If this situation 1s considered, it may be
concluded that ¢, °(0) colncides with the limiting stress for the initial
crack, This allows us to express the constant (¢ in terms of the static
modulus of cohesion ¥ (see, e.g., [7]). Using the solution of the static
problem [ 8]

25,°r 26,°
6z = 20 T2 g I8 for z2=0,r>r
11 ]/r”-—— ro? n r
where I, 1s the radius of the initial crack and using the criterlon of equi~
librium [7], we obtain o K
[+ 5% (O) ey ——
V2rn
This value must be equal to that from (3.11}, whence
22
€ =it (3.12)

= 2un (a*— 5% ro
In conclusion, the author would like to use this opportunity to express
his gratitude to N,V.Zvolinskii, A.A.Gvozdev and V.A.,Afanas‘ev for their
attention to this work and for useful discussions. The author also thanks
G.I.Barenblatt for valuable discussion of the paper.
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